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ABSTRACT 
 

 Real-time traffic flow routing is a promising approach to alleviating congestion.  Existing 
approaches to developing real-time routing strategies, however, have limitations.  This study 
explored the potential for using case-based reasoning (CBR), an emerging artificial intelligence 
paradigm, to overcome such limitations.  CBR solves new problems by reusing solutions of 
similar past problems. 
 

To illustrate the feasibility of the approach, the research team developed and evaluated a 
prototype CBR routing system for the interstate network in Hampton Roads, Virginia.  They 
generated cases for building the system’s case-base using a heuristic dynamic traffic assignment 
(DTA) model designed for the region.  Using a second set of cases, the research team evaluated 
the performance of the prototype system by comparing its solutions with those of the DTA 
model.  
 

The research team found that CBR has the potential to overcome many of the limitations 
to existing approaches to real-time routing and a CBR routing system is capable of producing 
high-quality solutions with reasonable a case-base size.  In addition, the research team found that 
real-time traffic flow routing will likely lead to significant user cost savings. 
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INTRODUCTION 
 

Managing traffic flow through real-time route guidance has emerged as one of the 
promising approaches to alleviating congestion.  This approach uses sensors such as inductive 
loops and closed circuit television (CCTV) cameras to monitor traffic flow continuously on the 
different segments of the highway network.  This information is then used to develop real-time 
route guidance strategies that suggest routes to drivers to try to use the network capacity fully. 

 
Although considerable investment has been made in the hardware needed for 

implementing real-time route guidance, relatively little attention has been paid to developing 
effective decision support systems (DSS) for the development of sound real-time routing 
strategies.  Phase I of this project, described in the Volume I report,1 resulted in the development 
of heuristic search/dynamic traffic assignment (DTA) models that can be used to determine near-
optimal routing strategies.  Two models were developed:  the first employed simulated annealing 
(SA) as the search algorithm, referred to as the SA-DTA model, and the other used genetic 
algorithms (GAs), referred to as the GA-DTA model.  Given the current and predicted travel 
conditions, these models can be used to find the routing strategy that will optimize a particular 
network performance criterion, such as total travel time.  This developed routing strategy 
describes how traffic should be distributed, over time, at each node of the network and is defined 
by the set of time-varying traffic splits for the prediction horizon considered. 

 
However, for a routing DSS to be effective, it must be able to function in real time.  As 

soon as traffic conditions change, such as when an incident occurs, routing strategies must be 
revised to mitigate the effects.  The SA-DTA and GA-DTA models developed during the first 
phase of this study could not meet this requirement. 
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CBR is an emerging artificial intelligence paradigm that has the potential to provide for 
such real-time functionality.  CBR solves new problems by reusing solutions of similar past 
problems.  It is based on the observation that when people solve a new problem, they often base 
the solution on one that worked for a similar problem in the past.  The motivation for adopting a 
CBR approach for real-time traffic routing is that a CBR system, by reusing successful routing 
strategies for similar conditions from its case-base, will avoid the need to solve the problem from 
the beginning using a complex mathematical model each time.  This should enable the system to 
function in real time. 

 
However, the concern with using CBR for a problem such as real-time routing is that the 

combinatorics of the problem might force the need for prohibitively large case-bases to achieve 
satisfactory performance.  For example, the “status” of an urban freeway system can take on a 
nearly infinite number of states.  For a CBR approach to be feasible, the system should be 
capable of producing solutions of satisfactory quality using case-bases of reasonable size. 

 
 

 
PURPOSE AND SCOPE 

 
The purpose of this second phase of the study was to investigate the feasibility of using 

CBR to provide for the real-time functionality required of a routing DSS.  To illustrate the 
feasibility of the CBR approach for real-time traffic flow management, this phase of the study 
developed and evaluated a prototype CBR routing DSS for the same network considered in the 
first phase.  This network, as shown in Figure 1, is composed of the interstate system in the 
Hampton Roads area of Virginia, namely, I-64, I-664, I-264, and I-464.  In addition to being one 
of the most heavily congested areas in Virginia, the Hampton Roads area network is highly 
dependent on only two major water crossings:  the Hampton Roads Bridge Tunnel (HRBT) and 
the Monitor-Merrimac Bridge Tunnel (MMBT).  

 
Figure 1.  The Hampton Roads Network 
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METHODOLOGY 
 

This phase of the project consisted of three major stages: 
 

1. developing the system architecture  
 
2. designing the prototype system  
 
3. developing and evaluating the prototype system. 

 
 

Developing the System Architecture 
 
Case-Based Reasoning 
 

Although CBR has been receiving increased attention over the last few years,2 CBR 
applications in transportation engineering are still in a very early stage.  A literature review 
identified only three examples of such applications.  The first applied CBR to the air traffic 
control problem.10   The second used CBR as a planning tool to select ITS projects,11 and the 
third used CBR as a diagnostic tool for addressing transit maintenance problems.12  
 

At a basic level, CBR solves a new problem by remembering a previous similar situation 
and reusing information and knowledge from that solution.  CBR can be represented as a cycle 
consisting of four processes (Figure 2): 
 

1. RETRIEVE the most similar case or cases. 
 

2. REUSE the information and knowledge in that case to solve the problem. 
 

3. REVISE the proposed solution. 
 

4. RETAIN the parts of this experience to be used for future applications. 
 

At the core of the CBR process is a case-base that stores previous instances of problems 
and their derived solutions.  When faced with a new problem, the system first accesses the case-
base and retrieves the case(s) most similar to the new case.  During the reuse process, the 
solution of the retrieved case is adapted to address the current problem more appropriately.  The 
solution is then tested for success during the revise process, by either directly implementing it in 
the real world or by evaluating it by a teacher (e.g., a human expert).  If the case is a success, it is 
retained in the case-base for future reuse.  
 
 CBR uses specific knowledge of previous situations or cases and allows for incremental, 
sustained learning, since a new experience can be saved each time a problem has been solved.  
This new case becomes available for future problems.  As pointed out by Aamodt and Plaza,2 no 
universal CBR methods exist that can be applied for every domain of application.  The challenge 
for any CBR research effort is thus to come up with methods suited to the application  
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Figure 2.  The CBR Cycle 
 
 
environment under consideration.  Core problems that need to be tackled by a CBR research 
effort can be divided into five areas: 
 

1. case representation 
 

2. case-base construction 
 
3. indexing and retrieval methods 

 
4. adaptation methods  

 
5. revise and retainment methods. 

 
A set of solutions to these five problems constitutes a CBR method.  
 
 
Case Representation 
 
 According to Kolodner,3 a case is a contextualized piece of knowledge representing an 
experience that teaches a lesson fundamental to the goals of the reasoner.  Kolodner thus views a 
case as consisting of two major parts:  the lesson it teaches and the context in which it can teach 
its lesson.  Watson,4 on the other hand, gives a more specific definition of a case.  He describes a 
case as consisting of three basic components: 
 

1. the problem, which describes the state of the world when the case occurred 
 
2. the solution, which gives the derived solution to that problem 
 
3. the outcome, which depicts the state of the world after solution implementation. 
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Case-base Construction 
 

Kolodner3 gave the following three guidelines for selecting cases for building the case-
base: 
 

1. Cases should cover the range of reasoning tasks for which the system is responsible. 
 
2. For the range of reasoning tasks, cases should cover the range of well-known 

solutions and common mistakes. 
 
3. Collecting cases should be an incremental process.  Whenever a certain deficiency is 

discovered in a system’s case-base, cases should be added to fill in the revealed gap.  
 
In selecting cases for the case-base, there is always a tradeoff between the size of the 

case-base (i.e., the number of cases stored) and the search speed.  Storing more cases is likely to 
improve the quality of the CBR system’s solutions since it provides for more problem coverage.  
However, as the size of the case-base increases, more search effort is needed to locate the most 
similar case.  
 
 
Indexing and Retrieval Methods 
 

Case indexing entails assigning indices to cases to facilitate their retrieval.  A number of 
guidelines have been proposed for index selection3,4: 
 

• Indices should be predictive.  Predictive features are those combinations of 
descriptors of a case that led to solving it the way it was solved and those that 
influenced the outcome. 

 
• Indices should be more abstract than the details of a particular case to allow for 

applying the case to as broad a collection of situations as appropriate. 
 
• Indices should be concrete enough to be easily recognized in the future. 
 
• Indices should be selected so as to make their predictions useful in reasoning. 

 
In the retrieval process, the system uses the features of cases to retrieve the most similar 

case(s) to the current problem or situation.  There are several methods for case retrieval.  The 
most commonly used is the nearest neighbor (NN) approach.  This approach assesses the 
similarity between the new and the stored cases based on matching a weighted sum of features. 
Given a query q and a case library L, the NN algorithm retrieves the most similar (i.e., least 
distant) case, x, in L.  The distance is defined as: 
 

dis ce x q w x difference x qf ff

n
ftan ( , ) ( , )= =� 1

2

           [1]
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where 
 

 
wf  is the parameterized weight value assigned to feature f  
 
the difference (xf, qf) is equal to 
 

|xf - qf |   if feature f is numeric 
 
0 if feature f is symbolic and xf = qf  
 
1  otherwise  
 

 
Numeric features are typically normalized (by subtracting their mean and dividing by their 
standard deviation) to ensure they have the same range, and hence the expected impact.36  

 
 
 
Adaptation Methods 
  

The most trivial type of reuse is when the solution of the retrieved case is directly applied 
to the new situation.  This rarely happens.  In most applications, there will be a need to transform 
or adapt the old solution so as to fit the new problem.  Adaptation algorithms can be broadly 
classified into structural adaptation and derivational adaptation.4,6 

 
Structural adaptation directly adapts the solution of the retrieved case.  The most common 

technique is to replace a component of the previous solution by a new value that may be 
provided by an auxiliary knowledge source.   
 

In derivational adaptation, the methods, rules, or algorithms that generated the original 
solution are replayed to produce a new solution to the current problem.  This will typically 
necessitate storing the planning sequence that constructed a solution along with the solution.  
The PRODIGY/ANALOGY program developed by Veloso and Carbonell at Carnegie Mellon is 
an example of this approach.7 

 
 Adaptation methods are usually domain specific.  However, they generally employ either 
one or a combination of the following three techniques: 
 

1. the use of a set of domain-dependent adaptation rules as is in CHEF, a CBR system 
for cooking recipe planning8,9 

 
2. the use of a domain model as in CASEY3 
 
3. the use of pieces of existing cases. 
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Revision and Retainment Methods 
  

When a proposed solution fails to achieve the desired result, an opportunity exists for 
learning from failure.  This phase is called the revision phase and consists of two subphases: 
(1) the evaluation phase, where the proposed solution is evaluated; and (2) the repair phase, 
where the solution is repaired using domain-specific knowledge.  

 
The repair phase involves detecting errors in the current solution and retrieving 

explanations for them.  Using the failure explanations generated, this phase then attempts to 
modify the solution so that the detected failures will not occur again.  The CHEF system8 is one 
of the best examples for this phase.  CHEF uses an explanation-based technique to learn the 
situations that will cause failure.  Steps are then added to the failed plan to prevent the causes of 
errors from occurring.  In many instances, however, the repair phase will require human 
intervention. 
 
 Retainment describes the process of incorporating the new problem-solving episodes into 
the existing knowledge.  The process is triggered by the outcome of the evaluation and possible 
repair phases and involves the following subtasks: 
 

1. selecting which information from the case to retain 
 

2. deciding how the case should be indexed for later use 
 

3. integrating the new case into the memory structure. 
 
 

Proposed System Architecture  
 

Figure 3 shows the proposed architecture, which consists of five modules: 
 
1. a match/retrieve module that retrieves cases from the case-base 

 
2. a case-base that stores instances of previous congestion problems in the region along 

with the routing strategy recommended to solve each problem 
 

3. an adaptation module that adapts retrieved cases to the needs of the current problem 
 
4. an evaluation module 
 
5. a learning module.  

 
The system will receive current and predicted traffic information from the surveillance 

and prediction subsystems of an Advanced Traffic Management System (ATMS).  Using this 
information, the match/retrieve module will access the case-base and attempt to retrieve the most 
similar previous case(s).  The retrieved case(s) is then passed to the adaptation module.  There 
are two possibilities here.  First, if a sufficiently close case (this can be judged from the 
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Figure 3.  Proposed System Architecture 
 
 
similarity score value) is retrieved, the solution of such case can be directly reused after the use 
of straightforward adaptation techniques.  If this is not the case, control is passed to the DTA 
module. 

 
The DTA component will determine the recommended traffic splits and their duration 

using the SA-DTA model developed during the first phase of this project.  The case retrieved by 
the match/retrieve module, though not sufficiently close to allow for simple adaptation, should 
still provide for a good starting point for the search algorithm.  In other words, the algorithm 
would not be starting its search procedure from scratch, but the retrieved case will help direct the 
search effort toward the most promising areas in the search space.  Without these cases, the 
algorithm will have to start its search procedure at a random point, which could be far from the 
optimal solution. 

 
The recommended routing strategy is then implemented through information 

dissemination devices such as variable message signs (VMS) and highway advisory radio.  Using 
the feedback provided by the ATMS’s surveillance system, the learning module will determine 
whether the strategy is a success or a failure (i.e., to determine the desirability index of the case).  
If the new case is a success, it is retained by the system to speed up the solution procedure when 
faced with a similar situation.  If it is a failure, it is assigned a low desirability index.  A low 
desirability index acts as a penalty term that prevents the case from being retrieved in the future.  
This prevents the system from repeating its mistakes. 
 

Ideally, the case-base of the proposed system should consist of routing scenarios that 
have been applied in the real world and have had their outcome assessed.  This will allow the 
system to take into account the uncertainty associated with the problem, since it ensures that the 
system’s recommendations are based on strategies that have worked in the real world.  
Unfortunately, these routing cases are typically not available prior to the implementation of the 
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system in the real world.  Either the system is new or historical data with routing strategies 
employed have not been archived.  There is, therefore, a need to “seed” the system with an initial 
case-base.   

 
The current study built the initial case-base using the SA-DTA model developed in the 

first phase.  The model uses the following inputs:  the initial state or the destined traffic density 
matrix at the time of initiation of the routing strategy, the traveler O-D matrix for the upcoming 
15 minutes, and the details of the incident scenario considered.  The model then outputs the 
“optimal” routing strategy that will result in the minimum total vehicles travel time.  A 
description of the SA-DTA model can be found in the Volume I report.1 

 
Consequently, to build the case-base, the range of problems and traffic conditions 

expected to occur in the study area was first identified.  For each problem, the SA-DTA model 
was used to arrive at the near-optimal routing strategy.  These “prototypical” problems and their 
solutions, as obtained from the SA-DTA model, were then stored in the initial case-base.  After 
implementation, the initial case-base will be augmented by the new real-world cases acquired 
through the learning module. 
 

The focus of this study was on nonrecurrent congestion problems where real-time routing 
is most needed.  For nonrecurrent congestion, the operation of the system is as follows.  The 
occurrence and verification of an incident will trigger the system.  The system will operate on a 
rolling horizon basis (as discussed in the first phase of the project, a rolling horizon approach 
helps in handling the uncertainty associated with predicting travel demand and driver 
behavior),13 where the problem is solved in a number of stages (Figure 4).  For each stage, the 
system considers a prediction horizon that is shorter than the total planning horizon of the 
problem.  The system will remain in operation until the incident is cleared.  At that time, it will 
recommend a strategy that will help flow return to normal. 

 

Figure 4.  Rolling Horizon Approach 
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A rolling horizon approach has implications with respect to the real-time execution 
required of a routing DSS.  For the first stage, real-time execution is crucial; within minutes of 
an incident being detected and verified, a routing strategy has to be implemented to mitigate the 
effects of the incident.  For subsequent stages, however, the system is required to solve the 
problem in a time period that is short enough to allow the solution for the upcoming stage to 
reflect actual demand and network configuration (typically around 5 minutes). 
 

To summarize, the proposed architecture offers a number of advantages over existing 
approaches to real-time traffic flow management.  These include: 

 
• By reusing similar routing scenarios from its case-base, the proposed system will 

avoid the need to solve a complex mathematical model each time.  This should enable 
the system to function in real time.  

 
• By acquiring new cases, the system will learn to refine its performance over time.  In 

addition, the system will grow in a manner that reflects site-specific experience.  
 

• CBR offers a means for handling the uncertainty associated with predicting travel 
demand and driver behavior.  This is because recommended strategies stored in the 
case-base can be based on solutions that actually worked on similar cases in the real 
world.  Moreover, using real-world cases could be advantageous over using a model-
based approach, since any model, regardless of its level of sophistication, is still an 
abstraction of reality.  

 
• The knowledge acquisition process is simplified since it merely involves acquiring 

past cases; this removes the difficulty associated with formulating rigid rules for route 
selection.  Moreover, the system can be initially implemented using a partial case-
base, since it will continuously grow through the feedback and learning processes.  
This is important since very little is currently known about the implications of route 
diversion. 

 
• Real-time traffic flow management is a domain characterized by continuous, gradual 

change.  For example, drivers’ response to information is likely to vary with time, as 
they gain or lose confidence in the system’s recommendations.  For such domains, 
traditional rule-based expert systems would exhibit a continuous and mysterious 
degradation in performance (unless the rule base is revised on a regular basis).  CBR, 
on the other hand, is well suited for continuously changing domain.  Previous cases 
are applied to new situations, and new cases are created (through the learning 
process) to address situations for which the existing cases are inadequate. 

 
 

Designing the Prototype System 
 
 With the system architecture developed, the current stage focused on designing the 
prototype routing DSS and its case-base.  Figure 5 shows the network’s link-node diagram used  
in developing the SA-DTA and the GA-DTA models of the project’s first phase, as well as in 
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Figure 5.  Link-Node Diagram of DTA Model Network 

 
 
developing the prototype CBR system.  As can be seen, the network consists of 37 zones and 43 
one-way links.  The network considered, given the location of the VMS, allows for routing 
traffic originating from the following routes:  Route 44, I-464, and Route 17, and destined to I-
64W. 
 
 
Case Representation 
 
 A case typically consists of three components:  the problem component, the solution 
component, and the outcome component. 
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The Problem Component 
 

For a routing DSS, the features required to describe the problem component of a case are 
divided into two broad categories.  The first includes those features needed to describe the 
current and the predicted traffic demand on the different links of the network.  The second 
consists of the features describing the incident scenario under consideration.  

 
Ideally, the current traffic demand for the Hampton Roads test network should be 

represented by the initial state destined density matrix.  This matrix, which takes the form of a 43 
x 37 matrix, describes the portion of the traffic density on each of the 43 links of the network that 
is “destined” for each of the 37 destinations (see Figure 5).  The predicted demand is given by 
the O-D matrix (a 37 x 37 matrix) for the upcoming 15 minutes.  From a practical standpoint, 
however, these data are not readily available to the operator of a traffic management center.  The 
available data are the traffic volumes on the different links as obtained from the system’s 
sensors.  In a typical DTA approach to real-time traffic flow management, the current volumes 
are first used to predict future volumes using some sort of a traffic prediction model.14,15  A 
dynamic O-D estimation procedure is then employed to deduce the O-D matrix from the current 
and predicted volumes.16  Finally, the deduced matrices are fed into the DTA model to determine 
the “optimal” routing strategy. 

 
For a CBR approach, it would therefore be quite advantageous if cases could be defined 

directly in terms of link volumes.  Describing cases in terms of link volumes will allow one to 
“bypass” the need to perform the O-D matrix estimation on-line.  This should result in additional 
savings in execution time.  This is the approach the current study adopted for developing the 
prototype. 

 
The initial state of a case is described by the current traffic volumes on the 43 links of the 

Hampton Roads network.  The predicted demand, on the other hand, is represented by the 
volumes on the 43 links that would have resulted from assigning the O-D matrix for the 
upcoming 15-minute interval, had no routing strategy been in effect, and had no incident have 
taken place.   To reflect the typical behavior of drivers in the region, the splitting rates for this 
case of no routing and no incident were obtained from a traditional static traffic assignment 
procedure. 
 

Finally, the problem component is completed by defining the location of the incident; the 
incident severity; and the estimated duration of the incident.  Representing the location and 
severity of an incident is quite straightforward.  The incident location is described by the link 
number, on which the incident took place, whereas the incident severity is represented by the 
value of the capacity of the freeway section, remaining after the incident has occurred.   

 
For describing the expected incident duration, however, it is important to remember that 

the prototype system is designed to operate on a rolling horizon basis, where the system solves 
the DTA problem in stages.  For each stage, the system considers a duration that is equal to the 
length of the prediction horizon considered, which might be less than the expected overall 
duration of the incident.  Since the system’s routing cases represent routing strategies developed 
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for a certain prediction horizon, the incident duration feature of a case should represent the time, 
within the prediction horizon considered, during which the incident is still in existence. 

 
To illustrate, consider the example of an incident duration of 40 minutes, with a 

prediction horizon and a roll period of 15 minutes.  Figure 6 shows the value of the incident 
duration that needs to be stored in the case structure for each of this problem’s four stages. 

 
Figure 6.  Representing Incident Duration 

 
 
The Solution Component 
 
 For a routing DSS, the solution component describes the “optimal” routing strategy (i.e., 
the set of the time-varying traffic splits obtained from the DTA model) developed to address the 
combination of traffic demand and incident characteristics described in the problem component 
of the case.  For the SA-DTA model considered in the current study, such a routing strategy is 
defined by 51 independent splitting rates.  
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The Outcome Component 
 

For a routing DSS, this component captures the routing strategy impact on the network 
performance (as measured by the vehicles’ total travel time, for example).  The current study 
uses the value of the SA-DTA model’s objective function as a measure of the quality of the 
implemented solution.  This objective function describes the number of vehicles hours spent on 
the network over the entire planning horizon.  This provides a surrogate measure of system 
delay. 
 

The adopted case structure for the Hampton Roads prototype routing system can thus be 
summarized as follows (Figure 7).  The problem component is represented by 89 features:  43 
features for the initial volumes on the 43 links; 43 features for the predicted volumes on the links 
for the upcoming 15-minute interval; and 3 features for the incident location, severity, and 
duration.  The solution component is represented by 51 features corresponding to the 51 
independent splitting rates describing a routing strategy.  Finally, the outcome component is 
described by one feature encoding the total cost of the implemented strategy. 

 
Problem Component 
       42 features for initial volumes on the 43 links 
       43 features for predicted volumes on the links 
       3 features for incident location, severity, and duration 
 
Solution Component 
       51 features for the 51 independent splitting rates 
 
Outcome Component 
       1 feature for value of the objective function of the SA-DTA model 

 
Figure 7.  Cast Structure for Hampton Roads System 

 
 
Case-base Construction 
  

Ideally, the routing system’s case-base should consist of routing scenarios that have been 
implemented in the real world and have had their outcome assessed.  Unfortunately, these 
routing cases are typically not available prior to the implementation of the system in the real 
world. There is, therefore, a need to “seed” the system with an initial case-base.  In this study, 
the SA-DTA model developed in the first phase of the project is used in building this seed case-
base.  This is done by solving the model for the range of problems and traffic conditions that are 
expected to occur in the study area. 

 
 As previously mentioned, running the DTA model requires the following data:  the initial 
state or the destined traffic density matrix at the time of initiation of the routing strategy, the O-D 
matrix for the upcoming 15 minutes, and the incident scenario. 
 

Ideally, the initial state destined traffic density and the O-D matrices should be available 
or estimated from real-time traffic data obtained from the traffic management center.  However, 
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since the Suffolk ATMS was not yet on-line at the time the study was conducted, alternate 
sources of data had to be sought. 

 
The current study had access to two relevant traffic data resources:  a calibrated MINUTP 

travel demand model and  5-minute traffic counts for the two tunnel facilities in the region (the 
HRBT and the MMBT) for 1995. 
 

The MINUTP travel demand model provided three valuable pieces of information: 
 

1. an estimate of the average daily volume on the different links of the network (from 
the results of the traffic assignment procedure) 

 
2. an estimate of the average daily O-D trip matrix 

 
3. the destinations of traffic on each link (i.e., the destined traffic density matrix) from 

the results of the select link analysis procedure.   
 
However, these estimates are averages for an entire day.  For the real-time traffic management 
problem, data are needed for much shorter periods to reflect the dynamic nature of traffic 
demand and flow. 

 
To address this, the short-term traffic counts from the tunnels are used to scale the 

MINUTP model estimates.  This is done by comparing the model’s assigned volume on the 
tunnels’ links to the short-term counts available to establish scaling factors. Two scaling factors 
are established.  The first factor is derived using the HRBT volumes, and applied to the right side 
of the network (i.e., nodes 1 → 16, 19 → 22, 29 → 31, 35 → 37; along with their associated 
links).  The second scaling factor, on the other hand, is derived using the MMBT volumes and 
applied to the left side of the network (i.e., nodes 17 → 18, 23 → 28, 32 → 34; along with their 
associated links). 

 
The problem with such a procedure, however, is that it introduces undesirable correlation 

among the cases and hence may bias the results of evaluating the performance of the CBR 
system.  In fact, such a procedure implies that one needs to know only the volumes on two links 
(i.e., the two tunnels) to deduce any 15-minute O-D matrix from the daily matrix; this is quite 
unrealistic.  To overcome this problem, a noise term is added to each cell of the scaled travel 
demand matrix.  The noise term assumes a random value that is within ± 20 percent of the cell’s 
number of trips.  This breaks the correlation and more closely resembles real-world traffic 
patterns and their inherent randomness. 
 
 
Case Selection Framework 

 
 The large number of features used to describe a routing case (Figure 7), coupled with the 
wide range of values that many of these features can assume, makes it practically impossible to 
store every possible case in the system’s case-base.  It thus becomes particularly important to 
select cases in a fashion that provides an adequate coverage of the range of problems the system 
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is expected to face and, at the same time, keeps the size of the case-base manageable.  As 
previously mentioned, the features needed to describe the problem component of the cases can 
be divided into two groups:  features for describing the current and predicted traffic demand (the 
86 features for the initial and predicted volumes on the 43 links) and features for describing the 
incident scenario (incident location, severity, and duration).  A case selection framework should 
thus strive to cover the expected range of values for these two groups of features while keeping 
the case-base size manageable.  
 
 
Case Selection for Covering the Expected Range of Links Volumes 
 

An important characteristic of traffic that justifies the application of a CBR approach is 
the fact that traffic patterns tend to recur.  One should not expect a big difference between the 
traffic volume at, say, 8:15 A.M. on a certain Monday and the volume at 8:15 A.M. on the 
following Monday.  Figure 8 illustrates this fact.  The figure plots the traffic pattern in the 
Hampton Roads Bridge Tunnel on the four Mondays of the month of March 1995.  As can easily 
be seen, the four traffic patterns plotted are quite similar. 

 
Figure 8.  Volume Variation with Time of Day on Mondays for HRBT 

 
Similarly, Monday traffic patterns should be expected to be comparable to Tuesday’s 

patterns, but differences should be expected between traffic patterns on weekdays and weekends.  
Figures 9 and 10 illustrate this fact.  The curves on these two figures represent average counts for 
March 1995 in 15-minute increments.  For example, the Monday curve represents the average of 
all the Mondays in that month.  As can be seen, for Monday through Thursday, traffic patterns 
are similar; on Fridays, however, they seem to exhibit a slightly different pattern.  Moreover, the 
traffic pattern on weekends is quite different from that on weekdays. 
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Figure 9.  Volume Variation with Time of Day on Weekdays for HRBT 
 

Figure 10.  Volume Variation with Time of Day on Weekends for HRBT 
 

 
Exploiting the recurrent nature of traffic patterns allows for a significant reduction in the 

size of the case-base.  Based on analysis of Figures 9 and 10, the research team decided to 
consider three groups for defining prototypical traffic patterns for constructing the case-base:  

 
1. group 1 for the weekdays Monday through Thursday 

 
2. group 2 for Fridays 

 
3. group 3 for weekends. 
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For each group, the average traffic counts for each 15-minute interval of the day were computed.  
The period over which averaging is performed could be as long as 1 year or limited to a 
particular season if seasonal variations in traffic patterns are significant.  Seasonal variations are 
the norm for recreational areas. 

 
Each group thus has 96 different traffic patterns (since there are 96 15-minute intervals 

within a 24-hour period).  By considering these three groups, only 288 cases (96 cases/group x 3 
groups) need to be stored for a particular incident scenario.  The premise here is that these 
average cases would provide for adequate coverage for the range of traffic volumes that are 
expected to occur during the period considered.  If more cases are required, for example to 
account for seasonal variation, they can be added. 
 
 
Case Selection for Covering the Expected Range of Incident Locations 

 
Within the framework of a DTA model, an incident location refers to the particular link 

on which an incident has taken place.  For the Hampton Roads network (Figure 5), this means 
that one has 43 possible incident locations to consider in building the case-base, since the 
network has 43 one-way links.  However, it might be possible to group links (i.e., incident 
locations) into clusters that have similar routing strategies; this would help reduce the number of 
incident locations that need to be considered.  For example, it is very likely that the routing 
strategy determined for the case where an incident has occurred on link 6 (Figure 5) would be 
quite similar to that for link 7 incident, provided that the traffic volumes and the incident severity 
levels are similar.  

 
To determine which incident locations could be grouped together, an experiment was set 

up where the SA-DTA model was used to find optimal strategies for a number of cases, where 
for each case, an incident was assumed to have taken place on one of the 43 links of the network.  
In this experiment, the incident severity level was kept constant and two levels (high and low) of 
traffic demand were considered, resulting in two sets of 43 cases each.  For each traffic demand 
level, the resulting routing strategies for the 43 incident locations were then compared to see 
which locations resulted in similar solutions.  Taking into account other considerations such as 
the links’ number of lanes and their geographic adjacency, 17 link clusters were defined.  Table 1 
shows these clusters along with the number of lanes of the links of each cluster and the link 
chosen to be the cluster’s representative link. 

 
 

Case Selection for Covering the Expected Range of Incident Severity Levels 
 

The incident severity level refers to the resulting reduction in the capacity of a roadway 
segment.  Previous research within the incident management research community has established 
typical values for incidents’ capacity reductions based on the number of lanes blocked and the 
original number of lanes of a segment (Table 2).  In the current study, these values are 
considered for developing the case-base.  By using these values, the system stores cases 
corresponding to three incident severity levels for three-lane segments and two for two-lane 
segments.  
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Table 1.  Link Clusters 
 

Cluster No. Links No. of Lanes Representative Link 
1 1-2 3 2 
2 3-5 2 4 
3 6-8 3 7 
4 9-11 3 10 
5 12-14 3 13 
6 15-17 2 16 
7 18-20 3 19 
8 21 3 21 
9 22 2 22 
10 23-24 3 24 
11 25-30 2 27 
12 31,33 2 33 
13 32,34 3 32 
14 35 2 35 
15 36-38 3 37 
16 39-42 3 40 
17 43 2 43 

 
  

Table 2. Capacity Reductions Attributable to Incidents (%) 
 
Original No. of Lanes  

Lanes Blocked 3 2 
1  50 60 
2  80 100 
3  100 - 

 
 
 
Case Selection for Covering the Expected Range of Incident Duration 
 

Since the prototype system is designed to operate on a rolling horizon basis, the incident 
duration feature of a case represents the time, within the prediction horizon considered, during 
which the incident is still in existence.  Since it is usually impossible to estimate incident 
duration precisely, incident durations were rounded up to the nearest 5 minutes in the current 
study.  Now, as previously mentioned, when adopting a rolling horizon approach, real-time 
execution is crucial for just the first stage.  For subsequent stages, the system is only required to 
solve the problem in a time period that is short enough to allow the solution for the upcoming 
stage to reflect actual demand and network configuration (typically around 5 minutes).  This 
quasi real-time execution requirement means that one has more time for adaptation when solving 
the subsequent stages of a rolling-horizon DTA problem, which in turn means that the quality of 
the case retrieved by the CBR component need not be as good as that retrieved for the first stage. 
  

Given this fact, and since a prediction horizon of 15 minutes is being considered, the 
research team proposed to develop five case-bases to cover the expected range of incident 
duration (Figure 11).  The first case-base, case-base I, is developed for the first stage, where real-
time execution is crucial.  This case-base considers an incident duration of 15 minutes, or the full  
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Figure 11.  Case-bases to Cover Expected Range of Incident Duration 
 

length of the prediction horizon (for the first stage, only a duration of 15 minutes is considered, 
since incidents whose duration is less than 15 minutes will typically not warrant region-wide 
routing).  For subsequent stages, case-bases II, III, IV, and V are developed for incidents of 
duration 15, 10, 5, and 0 minutes, respectively.  For case-bases II, III, IV, and V, the initial state 
is one where an incident has already been in existence for 15 minutes.  The initial state for case-
bases II, III, IV, and V is thus different from the initial state for the case-base I, where an 
incident has just occurred.  This is the reason for having two case-bases, case-bases I and II, 
covering an incident duration of 15 minutes. 

 
Now, with these five case-bases, the system is equipped with cases specifically developed 

for incidents of the following duration: 15, 20, 25, and 30 minutes.  For incidents with a duration 
greater than 30 minutes, the system will combine cases from these five case-bases to cover the 
required duration.  So, for example, to address the case of a 35-minute incident, the system will 
use the following case-bases (Figure 12): 

 
1. For stage 1, where the incident persists for the entire length of the prediction horizon, 

the system will use case-base I to find a routing strategy for the first 15 minutes. 
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2. For stage 2, where the incident persists for the entire length of the prediction horizon, 
the system will use case-base II to find a routing strategy for the next 15 minutes. 

 
3. For stage 3, where the incident exists for only the first 5 minutes of the prediction 

horizon, the system will use case-base IV (which considers an incident duration of 5 
minutes) to find a routing strategy for the third 15-minute interval. 

 
4. For stage 4, where no incident exists, the system will use case-base V (which 

considers an incident duration of 0 minutes).  The purpose of this strategy is to help 
flow return to normal. 

 

Figure 12.  Case-bases Used for a 35-Minute Incident 
 
 
For stages 1 and 2, the initial state for the cases stored in the case-bases is similar to the 

initial state for the problem being considered.  This is, however, not the case for either stage 3 or 
4.  This means that the distribution of traffic on particular links might be different.  However, 
since one has more time to adapt for subsequent stages, the research team conjectured that the 
cases retrieved in this fashion would still provide for a good starting point for the adaptation 
module.  The evaluation of this proposed scheme is addressed later. 
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Case Storage Requirements 
 

The number of cases needed for this design is 63,360 cases.  Storing this number of cases 
requires only about 17.5 MB of storage space, which is reasonable. 
 
 
Indexing and Retrieval 

 
As discussed previously, the prototype system has five case-bases, each developed to 

cover a particular incident duration.  To facilitate retrieval and speed up the search process 
within each case-base, an indexing scheme was developed.  According to this scheme, cases are 
indexed based on the values for the incident location feature and the incident severity level 
(Figure 13). As can be seen, under each combination of incident location and severity level, the 
288 cases, corresponding to the different traffic patterns, are stored. 

Figure 13.  Case-base Organization 
 
 
After the branch of the tree is determined, a nearest neighbor (NN) algorithm is used to 

retrieve the most similar case (i.e., least distant) of the cases stored under that branch.  The NN 
algorithm uses the 86 features for the current and predicted traffic volumes on the 43 links of the 
network.  The distance between a query q and a case , in case-base L was defined as: 

 
 

distance x q w x difference x qf ff

n
f( , ) ( , )= =� 1

2

                      [2]
 

 
where 

wf , the parameterized weight value assigned to feature f, was assumed to be equal to 1.0 
 
the difference (xf, qf) is equal to |xf - qf |. 

 
The traffic volumes on the links were normalized by subtracting their mean and dividing by their 
standard deviation to ensure they have the same range and hence the expected impact. 
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Adaptation 
  

As previously mentioned, there are two modes of operation for the adaptation module:   
simple and elaborate.  For the prototype system, simple adaptation is used when the capacity 
reduction value of the new problem differs from the capacity reduction values of the cases stored 
within the case-base.  To address this, the system uses linear interpolation to arrive at the 
recommended routing strategy.  For example, for the case of a 70 percent reduction in capacity, 
the routing strategy is derived as a weighted average of the strategy for an 80 percent reduction 
and that for a 50 percent reduction.  

 
Elaborate adaptation, on the other hand, involves running the SA-DTA model, developed 

in the first phase of the project, using the case retrieved by the NN algorithm as the start point.  
Since the start-point should be close to the “optimum,” the system searches for any better 
solutions only in the vicinity of the retrieved solution (local search); no time is wasted exploring 
other portions of the solution space.  
 
 By operating using a rolling horizon approach, the DSS will solve the problem in a 
number of stages.  For the first stage of this rolling horizon approach, real-time execution is 
crucial, whereas for subsequent stages, quasi real-time execution should suffice.  Now, for the 
first stage, the initial state for the cases stored in the system’s case-base will always be identical 
with the initial state of the current problem faced (both refer to the state where an incident has 
just occurred).  Given this, and the fact that real-time execution is required, only simple 
adaptation will be used for this stage.  For the subsequent stages of the rolling horizon approach, 
the initial state for the cases might be different from the initial state of the problem under 
consideration.  However, for these subsequent stages, one has more time for adaptation, since 
only quasi real-time performance is required.  Consequently, elaborate adaptation will be used 
for these stages. 
 
 
Revise and Retainment 

 
The proposed routing DSS will learn mainly through the acquisition of new cases from 

the real-world environment, along with their corresponding performance measures.  As a 
recommended routing strategy is implemented, the ATMS surveillance system will continue to 
monitor the status of traffic flow, and will record the value of one or more performance 
measure(s) (the total vehicles travel time or the average speed, for example) resulting from the 
recommended strategy.  The value of the same performance measure(s) in case routing has not 
been implemented (i.e., in case drivers were left to follow the routes they typically use) is 
estimated.  This can be done using the evaluation component of the SA-DTA or a more detailed 
simulation model, if desired.  By comparing the values of the performance measure with the 
routing strategy implemented to its value for the case of no routing, a measure of the desirability 
of the specific routing strategy can be derived.  This desirability index will then be stored, along 
with the case itself, in the system’s case-base, and will act as a decision factor to determine 
whether the strategy is a success or a failure. 
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If the new case is a success, it is retained by the system to speedup the solution procedure 
when faced with a similar situation in the future.  On the other hand, if the case is a failure (i.e., 
showing a low desirability index), attempts should be made to understand the reasons that led to 
its failure, and to develop a more successful scenario to that particular problem.  This repair 
process will typically require human intervention, and may even involve a modification of the 
evaluation component of the DTA module to more closely mimic real-world conditions.  The 
new solution should then be stored in the case-base.  In this manner, the DSS would be able to 
find a successful solution when faced with a similar problem in the future. 
 
 

Developing and Evaluating the Prototype System 
 

In this stage, the performance of the prototype routing DSS is evaluated.  Since there is a 
difference between the performance required of the system for solving the first stage of the 
rolling horizon DTA problem and that required for solving subsequent stages, the system 
evaluation on these two problems is addressed separately.  
 
 
Evaluating Performance on Stage 1 of the Rolling Horizon DTA Problem 
 
Prototype System Development 
 

Case-base I, whose initial state describes a state where an incident has just occurred, 
considers an incident duration of 15 minutes.  To reduce the time required for developing the 
prototype system case-base, a partial case-base for only the right side of the network (Figure 5) 
was constructed.  Table 3 shows the range of values for the cases’ features considered while 
developing the case-base. 

 
Table 3. Range of Values for Case-base I 

 
Feature (or group of features) Range of Values 

Traffic patterns Group 1 (Monday through Thursday) 
Incident location 21 incident locations (Links 1 through 21) 
Incident severity 3 severity levels for 3-lane segments 

2 severity levels for 2-lane segments 
Incident duration 15 min 

 
 
The number of cases required for building this partial case-base was about 2,400 cases.  

The cases were generated as follows: 
 
1. Short-term traffic counts from the two tunnels covering the months of March, April, 

and May 1995 were obtained.  The average traffic count for each 15-minute interval 
of the day was computed (by averaging the corresponding 15-minute traffic counts 
for all the Mondays, Tuesdays, Wednesdays, and Thursdays of the 3-month period). 

 
2. For each 15-minute interval, the corresponding 15-minute traffic counts from the two 

tunnels were used to scale the initial state matrix.  The counts from the next 15-
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minute interval were then used to scale the predicted travel demand matrix.  As 
explained previously, a noise term was added to each cell in the travel demand matrix 
to replicate real-world conditions and their randomness more closely. 

 
3. An incident scenario was generated by randomly selecting a link on which an incident 

was assumed to have taken place and randomly selecting the number of lanes 
blocked. 

 
4. The SA-DTA model was then used to find the “optimal” routing strategy for each 

case. 
 

5. To represent the cases according to the structure defined, the initial volume on each 
link of the network was derived from the initial state matrix by summing the cell 
values in the row of the destined traffic density matrix corresponding to the link 
considered.  The predicted volumes for the upcoming 15 minutes were obtained from 
an assignment of the O-D matrix using the typical traffic splits.  

 
Compiling this case-base of 2,400 cases required around 748 hours of CPU on a Pentium 

200 MHz PC.  The 96 cases corresponding to each incident scenario were each stored in a 
separate text file.  
 
 
Prototype System Evaluation 
 

To evaluate the performance of the system, a test-set consisting of 100 new cases was 
randomly generated in the following fashion: 

 
1. A time within the 3-month period was randomly selected.  The current and upcoming 

15-minute traffic counts from the two tunnel facilities for the randomly selected time 
were then used to scale the initial state and the O-D matrices with a random noise 
term added to the matrix entries to more closely resemble real-world conditions.     

 
2. For an incident location, a random number was drawn from the set {1,2,3, . . . ,21} to 

represent an incident on one of the 21 links considered in building the case-base. 
 
3. For the incident severity, the capacity remaining values were selected as follows:  A 

number was randomly drawn from the set {1,2,3} for three-lane segments and from 
the set {1,2} for two-lane segments to represent the number of lanes blocked.  The 
value of the capacity remaining was then randomly selected from the ranges shown in 
Table 4. 

 
4. Since this experiment was intended to evaluate the system’s performance on the first 

stage of the DTA problem, an incident duration of 15 minutes was assumed for all 
100 cases. 
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5. To represent the cases according to the previously defined structure, the current and 
predicted volumes on the network links were deduced from the initial state and O-D 
matrices as previously explained.       

 
 

Table 4. Capacity Remaining Under Different Incident Scenarios 
 

Lanes Blocked 3-lane Segments 2-lane Segments 
1  [40,41, . . . ,50] [30,31, . . . ,40] 
2  [10,11, . . . ,30] [0,1, . . . ,10] 
3  [0,1, . . . ,10]  

 
 
For each case of these 100 newly generated cases, the prototype CBR system was used to 

determine a recommended routing strategy.  Since as previously discussed, real-time execution 
was required for the first stage of the DTA, the study initially focused on running the CBR 
system using only the simple adaptation mode.  Under this simple mode of operation, solving a 
problem merely involved retrieving the most similar case(s), and applying linear interpolation 
whenever needed. The same case was then solved from scratch, using the SA-DTA model,  to 
determine the “optimal” strategy.  The quality of the routing strategy determined using the 
prototype CBR system was compared to the quality of the SA-DTA model solution.  This was 
done by comparing the total vehicles travel time resulting from implementing the CBR system’s 
recommended strategy to that resulting from the DTA model recommended strategies. 
 
 
Evaluating Performance on Subsequent Stages of DTA Problem 
 
Prototype System Development 

 
As previously discussed, the current study proposes developing four case-bases, covering 

incidents of duration 15, 10, 5, and 0 minutes, for use when solving the subsequent stages of the 
rolling horizon DTA problem.  The initial state for all four case-bases is one where an incident 
has been in existence for 15 minutes.  To cut down the time required for developing and 
evaluating the prototype’s performance, four partial case-bases were developed for a subset of 
the range of values that the different features of a case can assume.   Table 5 shows the range of 
values considered in developing the four case-bases.  Cases were generated according to the five-
step procedure described in the previous section.  

 
 

Table 5.  Range of Values for Case-bases II, III, IV, and V 
 

Feature (or group of features) Range of Values 
Traffic patterns Group 1 (Monday through Thursday) 
Incident location Links 10 
Incident severity Three severity levels 
Incident duration 15 min for case-base II, 10 min for case-base III, 5 min for 

case-base IV, 0 min for case-base V  
 



 

 

 

27

Prototype System Evaluation 
  

Twenty-five new cases were generated.  However, in this case, the incident location was 
fixed (i.e., link 10) and the incident duration was allowed to vary between 15 and 60 minutes in 
units of 5 minutes (e.g., 25, 40, . . ., etc.).  The number of stages needed to solve each problem 
thus varies based upon the duration of the incident.  Consequently,  to generate the predicted 
O-D matrices for the stages of a particular problem, successive 15-minute counts from the 
tunnels were used for scaling the daily values.  For example, the initial and predicted traffic 
demands for the stages of a case with an incident that starts at 8:15 A.M. on a particular day and 
lasts for 40 minutes were generated as follows. 
 

1. For stage 1, the initial state was generated by scaling the destined traffic volume 
matrix using the 8:15 A.M. traffic counts (traffic volume values were then converted 
into the corresponding density values as previously explained).   Predicted demand 
for the upcoming 15 minutes was generated by scaling the O-D matrix  using the 8:30 
A.M. counts. 

 
2. For stage 2, the initial state was the state resulting after implementing the 

recommended routing strategy for stage 1.  This state was obtained from the output of 
the SA-DTA model.  The predicted demand was then generated using the 8:45 A.M. 
counts. 

 
3. Step 2 was repeated for stages 3 and 4.     

 
Table 6 shows the incident duration for the 25 cases constituting the test problem set, 

along with the number of stages needed to solve each problem.  The table also shows the case-
bases utilized in solving the different stages of each problem. 
 

The prototype system was then used to determine a routing strategy for the different 
stages of the 25 cases comprising the test set.  Since, the system has more time to adapt when 
solving the DTA problem for stages other than the first stage, the adaptation module was run for 
a maximum of 5 minutes.  The same cases were then solved using the SA-DTA model.  The 
quality of the CBR system’s routing strategies were then compared to the quality of the SA-DTA 
model’s strategies. 

 
 

Assessing Anticipated Time Savings from System Implementation 
  

The partial case-base developed for building the prototype system was analyzed so as to 
obtain a measure of the expected time savings resulting from implementing the system.  This was 
done by comparing the total vehicles travel time under the system’s recommended routing 
strategy, to the total time that would have resulted if drivers were left to take the routes they 
typically use (i.e., no routing strategy was to be implemented).  The total travel time for this 
latter case of no routing (base case) was determined using the typical traffic splits obtained from 
static assignment.  It is important to note that this methodology provides a best-case estimate of 
time savings when the routing strategy is fully “followed” by the traveling public. 
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Table 6.  Incident Duration for Test Problem Set 
 

Case No. Duration No. of Stages Case-bases Used 
1 45 4 I, II, II, V 
2 45 4 I, II, II, V 
3 55 5 I, II, II, III, V 
4 20 3 I, IV, V 
5 25 3 I, III, V 
6 50 5 I, II, II, IV, V 
7 15 2 I, V 
8 60 5 I, II, II, II, V 
9 60 5 I, II, II, II, V 
10 40 4 I, II, III, V 
11 60 5 I, II, II, II, V 
12 25 3 I, III, V 
13 45 4 I, II, II, V 
14 30 3 I, II, V 
15 60 5 I, II, II, II, V 
16 45 4 I, II, II, V 
17 50 5 I, II, II, IV, V 
18 60 5 I, II, II, II, V 
19 15 2 I, V 
20 60 5 I, II, II, II, V 
21 30 3 I, II, V 
22 30 3 I, II, V 
23 55 5 I, II, II, III, V 
24 15 2 I, V 
25 50 5 I, II, II, IV, V 

 
 
 

RESULTS AND DISCUSSION 
  

System Evaluation for Stage 1 of DTA Problem 
 
Performance with the Elaborate Adaptation Module Deactivated 

 
Each of the 100 newly generated cases was solved using the prototype CBR system 

(employing only the simple adaptation module and the SA-DTA model.  From an execution time 
standpoint, the CBR approach resulted in significant time savings.  The average solution time for 
the SA-DTA model was 18.8 minutes.  The CBR system needed less than 0.02 minutes and is 
therefore quite capable of functioning in real time. 

 
To compare the quality of the CBR approach’s solutions to the SA-DTA model’s 

solutions, the percentage difference in the cost (i.e., total vehicles travel time) between the two 
solutions was computed.  Figure 14 depicts a histogram for the distribution of the percentage 
difference in cost for the 100 cases. 

 
As can be seen, the performance of the system seems to be quite adequate, especially 

given the fact that only simple adaptation was used.  For 98 of 100 cases, the percentage 
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Figure 14.  Histogram for Percentage Difference in Cost 

 
difference in cost is less than 1 percent.  Of these 98 cases, 68 cases actually had a percentage 
difference of less than 0.1 percent, and 10 cases had a difference between 0.1 and 0.2 percent.  
Only two cases had a percentage difference greater than 1 percent: case 42 (6.25%) and case 52 
(3.36%). 
  
 
Performance with the Elaborate Adaptation Module Activated 
  

Although real time execution is required for the first stage of the DTA problem, it might 
still be possible to run elaborate adaptation module for a short time period that still satisfies the 
real-time execution requirement.  Since the study was using only a Pentium 200 MHz PC, the 
study considered this short time period to be equal to 60 seconds of run time on that PC.  
Consequently, for each of the 100 cases, the elaborate adaptation module was run, with the case 
returned by the simple adaptation as a start point, for 60 seconds, and the quality of the solution 
recorded every 10 seconds of execution.  Figures 15 and 16 show the distribution of the 
percentage difference in cost between the CBR solution and the SA-DTA after 30 seconds and 
60 seconds of running the elaborate adaptation module. 
 
 As can be seen, running the adaptation module for even very short time intervals results 
in an improvement in the quality of the solutions returned by the system.  After 30 seconds of 
adaptation, 77 cases had a percentage difference of less than 0.1 percent and 7 cases had a 
difference between 0.1 and 0.2 percent.  On the other hand, after 60 seconds of adaptation, 82 
cases had a percentage difference of less than 0.1 percent and 6 cases had a difference between 
0.1 and 0.2 percent (when merely using simple adaptation, only 68 cases had a percentage 
difference of less than 0.1 percent and 10 cases had a difference between 0.1 and 0.2 percent).  
There was also an improvement in the percentage difference in cost for the greater than 1.0 
percent group (cases 42 and 52).  For case 42, the difference dropped from 6.25 percent down to 
2.48 percent after 30 seconds, and down to 0.13 percent after 60 seconds.  For case 52, the  
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Figure 15.  Percentage Difference Histogram After 30-Second Adaptation 

 
Figure 16.  Percentage Difference Histogram After 60-Second Adaptation 

 
difference dropped slightly from 3.36 percent to 3.35 percent after 30 seconds, and to 2.45 
percent after 60 seconds. 
 
 
Significance of Difference in Cost 

 
To assess the significance of the difference between the cost of the CBR and the SA-

DTA model solutions better, the range of values for all feasible solutions was determined for 
each of the 100 cases.  This was done by modifying the search algorithm so as to search for the 
solution giving the maximum value for the objective function (i.e., the worst routing strategy).  
The difference in cost between the CBR solution (obtained after 60 seconds of adaptation) and 
SA-DTA solution was then expressed as a percentage of the feasible solution range. 
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Figure 17.  Histogram for Difference as Percentage of Feasible Range 
 
Figure 17 is a histogram showing the distribution of the difference in cost expressed as a 

percentage of the feasible range.  As can be seen, the difference was less than 1 percent of the 
feasible range for 87 cases. Only one case (case 52) had a percentage difference greater than 5 
percent (namely, 7.12%).  This shows that the quality of a CBR solution is comparable to that of 
the SA-DTA model. The performance of the proposed CBR routing DSS thus seems to be quite 
satisfactory. 
 
 The study then subjected the system to a more stringent evaluation process  to assess the 
significance of differences between the CBR and the SA-DTA solution.  In this process, the 
study compared the time savings resulting from implementing the CBR system’s recommended 
routing strategy to savings resulting from the SA-DTA model’s strategy.    To do this, it was first 
necessary to calculate the total vehicle travel time for the instance where no routing strategy had 
been implemented (i.e., drivers were left to take the routes they typically use).  The total vehicle 
travel time for this instance, referred to as the base condition travel time, was computed using the 
drivers’ typical traffic splits.   For each case, a score, referred to as the system’s success score, 
was computed.  The success score is given by: 
 

100
)_'_(

)_'_( ×
−−

−=
timetravsstrategyTASAtimetravconditionBase

timetravsstrategyCBRtimetravconditionBasescoreSuccess              [3] 

           
Figure 18 is a histogram for the distribution of the success score.  As can be seen, for 86 

cases, the success score was between 90 and 100 percent.  Only one case had a success score of 
less than 50 percent (namely, 47%).  This shows that the CBR approach is capable of achieving 
time savings that are comparable to the SA-DTA’s model approach.  Moreover, the CBR 
approach does that in a fraction of the time needed by the SA-DTA model, and hence is capable 
of satisfying the execution time constraints imposed by the problem.   
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Figure 18.  System’s Success Score Distribution 
 
 

System Evaluation for Subsequent Stages of the DTA Problem 
  

Figure 19 shows the distribution of the percentage difference in cost between the CBR 
system and the SA-DTA model solutions for stage II.  As can be seen, the difference in cost was 
less than 0.1 percent for 24 of the 25 cases, indicating that the quality of the solutions produced 
by the CBR system and the SA-DTA model is comparable.  The results for stages III, IV, and V 
were comparable to the results for stage II.  For stages III and IV, all cases had a percentage 
difference of less than 0.1 percent, and for stage V, 9 of the 11 cases had a percentage difference 
of less than 0.1 percent. 

 
Figure 19.  Percentage Difference Histogram for Stage 2 

 
Although the CBR approach was capable of producing solutions of comparable quality to 

the SA-DTA model approach, it ran much faster (see Table 7).  

24

0 0 0 0 1 0 0 0 0
0

5

10

15

20

25

N
o

.  o
f  

C
as

e
s

0.
0-

0.
1  

0.
1-

0.
2  

0.
2-

0.
3 

0.
3-

0.
4 

0.
4-

0.
5 

0.
5-

0.
6 

0.
6-

0.
7 

0.
7-

0.
8 

0.
8-

0.
9 

0.
9-

1.
0 

% D i f fe ren c e in C o s t

> > > > > > > > > >



 

 

 

33

Table 7.  Average Execution Time for SA-DTA and CBR Models (min) 
 

Stage SA-DTA CBR  
II 20.68 3.62 
III 21.91 3.41 
IV 23.05 4.15 
V 23.26 4.97 

 
 

Anticipated Time Savings from System Implementation 
  

Table 8 compares the time savings using different routing strategies.  The times are for 
the cases where incidents are assumed to have occurred during the evening peak 15-minute 
period.  As can be seen, the time savings range from 944.7 to 9515.0 vehicle.minutes/15 minutes, 
with an average of 4358.3 vehicle.minutes/15 minutes. 
  
 

Table 8.  Time Savings of Routing Strategies 
  

 
Incident 
Location 

Capacity 
Reduction 

(%) 

Base Case 
Trav_time 

(no routing) 

Trav_time
(with 

 routing) 

 
Time Savings 

(veh.period/15 min)

 
Time Savings 

(veh.min/15 min) 

 
% Time 
Saved 

50 99706 98417.5 1288.5 1073.8 1.3 
80 126803 118474 8329 6940.8 6.6 

 
Link 2 

100 129317 121004 8313 6927.5 6.4
60 126401 117313 9088 7573.3 7.2Link 4 

100 167871 158938 8933 7444.2 5.3 
50 102319 99402.4 2916.6 2430.5 2.9 
80 137159 127663 9496 7913.3 6.9 

 
Link 7 

100 158580 151030 7550 6291.7 4.8
50 118475 107057 11418 9515.0 9.6 
80 151517 141924 9593 7994.2 6.3

 
Link 10 

100 163919 155324 8595 7162.5 5.2
50 132116 125486 6630 5525.0 5.0 
80 155846 148599 7247 6039.2 4.7

 
Link 11 

100 168777 163520 5257 4380.8 3.1
50 95655.7 94407.5 1248.2 1040.2 1.3
80 97009.8 95475.1 1534.7 1278.9 1.6

 
Link 13 

100 100757 99251.1 1505.9 1254.9 1.5
60 95655.7 94522.1 1133.6 944.7 1.2Link 15 

100 106639 105205 1434 1195.0 1.3
50 100513 97934.3 2578.7 2148.9 2.6
80 119805 114992 4813 4010.8 4.0

 
Link 19 

100 129513 124714 4799 3999.2 3.7
50 96360.5 94426.7 1933.8 1611.5 2.0
80 106337 103578 2759 2299.2 2.6

 
Link 21 

100 112862 110507 2355 1962.5 2.1
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To give a crude estimate of the potential annual dollar savings resulting from the system, 
the research team assumed an incident frequency of one incident/day and an average duration of 
incident-related congestion of 1 hour per incident.  According to Chui et al.,17 a reasonable 
estimate for the value of time (in 1985) is $9.75/hour.persons.  Assuming a vehicle occupancy of 
1.3 and inflating the 1985 estimate to 1997 dollars (assuming a 3% inflation rate), the research 
team obtained a time value of $17/vehicle hours.  Based on these estimates, VDOT could expect 
to provide $1.8 million per year in user cost savings. 
 
 
 

CONCLUSIONS 
  

• A CBR DSS for real-time traffic routing has the potential to overcome many of the 
limitations of existing approaches to the problem. 

 
• Owing to the recurrent nature of traffic, a CBR system can produce high-quality solutions 

with reasonable-size case-bases. 
 
• From an execution-time standpoint, a CBR routing system is quite capable of functioning in 

real time. 
 
• By using the link volumes to describe the cases, a CBR system eliminates the need to 

perform the O-D matrix estimation step on-line, resulting in additional savings in execution 
time. 

 
• Investments in TMS infrastructure are warranted, since these systems have the potential to 

result in substantial annual motorist time/cost savings. 
 

 
 

RECOMMENDATIONS 
 

1. Provide TMSs with the capability for the easy archival and retrieval of historical traffic data. 
This can be achieved by including the following items in TMS functional requirements:  
SQL-compliant database management system, capability to archive traffic flow data to a non-
volatile medium, and hardware with a high storage capacity.  

 
2. Continue to add traveler information devices and services in major urban areas.  These 

devices are particularly needed in advance of major diversion interchanges to support the 
provision of routing information. 

 
 
 

SUGGESTIONS FOR FURTHER RESEARCH 
 
• Since the retrieval algorithm used by the current study assigns equal weights to all features, 

attempt to determine appropriate values for the weights in a fashion that assigns higher 



 

 

 

35

weights to the more relevant features.  Methods exist that can automatically perform this task 
using little or no domain-specific knowledge.18    One approach that seems most promising is 
to use genetic algorithms to update feature weights using randomly selected training cases.  
The developed match/retrieve module uses a single nearest neighbor algorithm that retrieves 
only the most similar case.  There are advantages to exploring the use of k nearest neighbor 
algorithms to retrieve the k most similar cases, and combine the solutions of these k cases to 
arrive at the recommended strategy. 

 
• Once the Suffolk ATMS is completed, determine how devices such as VMS could be used to 

affect the route selection of motorists so as to achieve the required traffic splits.  The results 
from such a study should then be used in formulating a set of “information” strategies that 
can be used to achieve the desired diversion levels.  These strategies could then be stored 
within the system’s case-bases. 

 
• Once the Suffolk ATMS is completed, implement the learning module.  Then, a study could be 

undertaken to evaluate the performance of the system under real traffic conditions. 
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